RIGIDITY OF FLAG SUPERMANIFOLDS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Rigidity Theorems for Finsler Manifolds of Sectional Flag Curvature

In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.

متن کامل

On Calabi-Yau supermanifolds

We prove that a Kähler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yau’s theorem does not hold for supermanifolds. Calabi[1] proposed that if a Kähler manifold has vanishing first Chern class, that is, the Ricci-form obeys Rij̄(g) = ∂iv̄j ...

متن کامل

Supermanifolds from Feynman graphs

We generalize the computation of Feynman integrals of log divergent graphs in terms of the Kirchhoff polynomial to the case of graphs with both fermionic and bosonic edges, to which we assign a set of ordinary and Grassmann variables. This procedure gives a computation of the Feynman integrals in terms of a period on a supermanifold, for graphs admitting a basis of the first homology satisfying...

متن کامل

On Ricci flat supermanifolds

We study the Ricci flatness condition on generic supermanifolds. It has been found recently that when the fermionic complex dimension of the supermanifold is one the vanishing of the super-Ricci curvature implies the bosonic submanifold has vanishing scalar curvature. We prove that this phenomena is only restricted to fermionic complex dimension one. Further we conjecture that for complex fermi...

متن کامل

Mirror Symmetry and Supermanifolds

We develop techniques for obtaining the mirror of Calabi-Yau supermanifolds as super Landau-Ginzburg theories. In some cases the dual can be equivalent to a geometry. We apply this to some examples. In particular we show that the mirror of the twistorial Calabi-Yau CP becomes equivalent to a quadric in CP×CP as had been recently conjectured (in the limit where the Kähler parameter of CP, t → ±∞...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2020

ISSN: 1083-4362,1531-586X

DOI: 10.1007/s00031-020-09629-6